Evaluation of the 2015-16 Teacher Excellence Initiative (TEI):
Final Report

Department of Evaluation and Assessment

Michael Hinojosa, Ed.D.
Superintendent of Schools
This page is intentionally left blank.

Approved Report of the
Department of Evaluation and Assessment

EA17-539-2.1
February 2017

Nora E. Douglas, Ph.D.
Mitch Barton, Ph.D.

Joan Bush, Ph.D.
Director – Program Evaluation

Cecilia Oakeley, Ph.D.
Assistant Superintendent – Evaluation and Assessment

Michael Hinojosa, Ed.D.
Superintendent of Schools
This page is intentionally left blank.
Table of Contents

ABSTRACT ... 1

PROGRAM DESCRIPTION .. 2

Background Information .. 2
Purpose and Goal .. 3

PURPOSE AND SCOPE OF THE EVALUATION .. 3

MAJOR EVALUATION QUESTIONS AND RESULTS ... 4

What were the program components of TEI? ... 4
Methodology .. 4
Results ... 4

What were the demographic characteristics of teachers? .. 8
Methodology .. 8
Results ... 8

What were the results of the Teacher Performance component of TEI? .. 11
Methodology .. 11
Results ... 11
Comparing Changes from 2014-15 to 2015-16 ... 16

What were the results of the Total Student Achievement component of TEI? .. 17
Methodology .. 17
Results ... 17
Comparing Changes from 2014-15 to 2015-16 ... 22

What were the results of the Student Experience component of TEI? ... 23
Methodology .. 23
Results ... 23
Comparing Changes from 2014-15 to 2015-16 ... 26

What were the correlations among TEI Components? ... 27
Methodology .. 27
Results ... 27
Comparing Changes from 2014-15 to 2015-16 ... 30

What were the evaluation scores and evaluation ratings for TEI? ... 31
Methodology .. 31
Results ... 31
Comparing Changes from 2014-15 to 2015-16 ... 33

What were the results of the compensation system of TEI? ... 33
Methodology .. 33
Results ... 35
Comparing Changes from 2014-15 to 2015-16 ... 39
What were the results for the Distinguished Teacher Review Process? 39
Methodology .. 39
Results .. 39
Comparing Changes from 2014-15 to 2015-16 .. 39

What were retention rates for teachers? .. 40
Methodology .. 40
Results .. 40
Comparing Changes from 2014-15 to 2015-16 .. 40

What were the results for TEI performance by high school feeder pattern? 43
Methodology .. 43
Results .. 43
Comparing Changes from 2014-15 to 2015-16 .. 43

What were the results for Teacher Demographic Groups within TEI? 47
Methodology .. 47
Results .. 48
Comparing Changes from 2014-15 to 2015-16 .. 48

SUMMARY AND RECOMMENDATIONS .. 54
Summary .. 54
Recommendations .. 59
REFERENCES .. 60
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teacher Categories and Associated Component Weights</td>
</tr>
<tr>
<td>2</td>
<td>Growth between First and Last Spot Observations</td>
</tr>
<tr>
<td>3</td>
<td>Percentage of Teachers Who Received a Proficient or Exemplary Rating by Summative Evaluation Indicator</td>
</tr>
<tr>
<td>4</td>
<td>Correlations between Average Spot Observation Scores and Summative Performance Evaluation Scores</td>
</tr>
<tr>
<td>5</td>
<td>Correlation between Total Student Achievement Measures</td>
</tr>
<tr>
<td>6</td>
<td>Student Experience Points Target Distribution</td>
</tr>
<tr>
<td>7</td>
<td>Cut Points for Percentage of Items with Positive Responses by School Level</td>
</tr>
<tr>
<td>8</td>
<td>Evaluation Rating Target Distribution</td>
</tr>
<tr>
<td>9</td>
<td>Effectiveness Levels and Associated Salaries</td>
</tr>
<tr>
<td>10</td>
<td>Reasons Teachers Left the District</td>
</tr>
<tr>
<td>11</td>
<td>Component and Overall Scores by Teacher Demographic Groups</td>
</tr>
<tr>
<td>12</td>
<td>Total Student Achievement Scores by Teacher Demographic Groups</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>31</td>
<td>Average Summative Performance Evaluation Score by High School Feeder Pattern</td>
</tr>
<tr>
<td>32</td>
<td>Average Total Achievement Scores by Category and Feeder Pattern</td>
</tr>
<tr>
<td>33</td>
<td>Average School STAAR Score by High School Feeder Pattern</td>
</tr>
<tr>
<td>34</td>
<td>Average Student Experience Score by High School Feeder Pattern</td>
</tr>
<tr>
<td>35</td>
<td>Percentage of Teachers Achieving DTR</td>
</tr>
<tr>
<td>36</td>
<td>Average Evaluation Scores by Creditable Years of Service</td>
</tr>
<tr>
<td>37</td>
<td>Percentage of Proficient and Above Teachers by Creditable Years of Service</td>
</tr>
<tr>
<td>38</td>
<td>Average Creditable Years of Service by Evaluation Rating</td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
EVALUATION OF THE 2015-16
TEACHER EXCELLENCE INITIATIVE (TEI):
FINAL REPORT

Project Evaluator: Nora E. Douglas, Ph.D.
Mitch Barton, Ph.D.

ABSTRACT

The Teacher Excellence Initiative (TEI) began its first year of implementation during the 2014-15 school year and continued during the 2015-16 school year. The TEI system defines, supports, and rewards excellence, and its primary objective is to improve student learning by improving teacher effectiveness. TEI is a continuous improvement model that includes annual evaluations of teachers, coaching and training opportunities to develop teachers, and opportunities for teachers to receive pay increases as a result of merit rather than tenure.

An analysis of TEI scores in all areas was conducted. Within teacher performance, the average spot observation scores increased from 2014-15 to 2015-16, indicating TEI evaluator feedback could be leading to improved performance over time. The correlation between spot observations scores and summative performance evaluation scores also increased from 2014-15 to 2015-16, which indicated that TEI evaluators’ summative scores became more strongly aligned with what they observed in the classroom over time. Within student achievement, relationships among teacher-level student achievement, School STAAR, and Student Learning Objective (SLO) measures remained stable, though relatively weak, from 2014-15 to 2015-16. In regards to student experience, the percentage of items with a positive response on the student survey was found to vary by school level. Elementary core teachers received a significantly higher percentage of positive responses than elementary non-core, middle school, and high school teachers. Furthermore, first-year teachers had the lowest summative performance evaluation scores, total student achievement, and percentage of items with a positive response than other teachers. The average evaluation score for Category A, B, C, and D teachers increased from 2014-15 to 2015-16, which indicated that teachers were performing better over time. The average salary for teachers in each effectiveness level who stayed in a TEI position increased from 2014-15 to 2015-16, except for teachers in the unsatisfactory level. The percentage of teachers who left the Dallas Independent School District decreased from 2014-15 to 2015-16, and the largest percentage of teachers who left the district were in the Unsatisfactory or Progressing I classifications for both 2014-15 and 2015-16. This indicated that a greater percentage of low performing teachers left the district compared to high performing teachers over time. The outcomes of TEI are demonstrated in feeder pattern and teacher demographic group analyses, such as the positive performance of Accelerating Campus Instruction (ACE) campuses.
PROGRAM DESCRIPTION

Background Information

The Teacher Excellence Initiative (TEI) began its first year of implementation of the evaluation and associated support systems during the 2014-15 school year. In the summer of 2014, administrators and other central office staff members within TEI began certifying evaluators on the TEI system. Beginning in 2015-16, teacher evaluation results from the 2014-15 school year were used to determine compensation levels. TEI funding for the first year came in part through General Operating funds as well as through the Texas Education Agency (TEA) Educator Excellence Innovation Program (EEIP). The purpose of the TEA EEIP grant is outlined on the TEA webpage and is described as follows:1

This purpose of this program is to improve educator effectiveness in Texas public schools through the funding of innovative practices that target the entire timeline of a teacher's career. The grant awardees will improve student performance by fostering open, supportive and collaborative campus cultures that allow teachers to seek and attain growth within their field. These new models of recruitment, preparation, hiring, induction, evaluation, professional development, compensation, career pathways and retention will be evaluated for their effectiveness in fostering effective teaching and improving student performance, especially among students attending Title I-funded schools with high levels of economically disadvantaged enrollment, so that best practices can be scaled across the state. Required practices include induction and mentoring, evaluation, professional development and collaboration, and strategic compensation and retention. Preferred practices include recruiting and hiring, and career pathways. This program seeks to provide resources to those applicants that, but for the funds provided by the grant, could not implement the effective and innovative practices detailed in their local educator excellence innovation plan. The submitted application should directly address the applicant's need for the grant to successfully carry out these practices.

The TEI system continued during the 2015-16 school year. Teacher evaluation results from 2015-16 were used to determine compensation in 2016-17. In 2015-16, Dallas ISD renewed the $1 million grant through TEA EEIP. This funding was not only allocated to the TEI department, but to other departments involved in the administration of TEI as well (ancillary positions such as professional development and information technology). Not all positions under the grant were filled during the 2015-16 school year; thus, TEI did not receive 100 percent of the funds allocated. The grant could have funded the full salaries of 12 positions, eight of which were housed under TEI. Of those eight allocated TEI positions, not all were staffed during the 2015-16 school year. The grant also partially funded 38 instructional coach positions used in the Distinguished Teacher Review process. For the 2016-17 school year, the requirement that external evaluators observe DTR-eligible teachers was removed from the DTR review process; thus, these positions were not funded after 2015-16.

1 A description of the TEA EEIP grant can be found at, http://tea.texas.gov/About_TEA/News_and_Multimedia/Correspondence/TAA_Letters/2014-2016_Educator_Excellence_Innovation_Program/
Purpose and Goal

The initiative was established with one primary objective, to improve student learning by improving teacher effectiveness. The TEI system defines, supports, and rewards excellence. Defining Excellence involves conducting annual evaluations of teachers that contain a combination of teacher performance indicators, student achievement indicators, and student survey results. Supporting Excellence involves developing teachers through self-facilitated learning opportunities, one-on-one coaching supports, whole-group training opportunities, district content workshops, differentiated professional development academies, and a new teacher mentor program. Rewarding Excellence is providing teachers opportunities to significantly increase their salaries based on performance rather than tenure with the district. TEI is a continuous improvement model and is designed to account for the differing teaching environments of Dallas ISD teachers.

PURPOSE AND SCOPE OF THE EVALUATION

The second year of the TEI evaluation continued to focus on TEI efforts to define, support, and reward excellence and addressed the following questions:

1. What were the program components of TEI?
2. What were the demographic characteristics of teachers evaluated under the TEI?
3. What were the results of analyses related to TEI system components (i.e., teacher performance, student achievement, and student experience), the compensation system, the Distinguished Teacher Review process, teacher retention rates, high school feeder pattern performance, and teacher demographic groups for the 2015-16 school year?
4. What were the Evaluation and Assessment (E&A) department evaluators’ recommendations with respect to program improvement or continuance?

Each section of the evaluation includes a review of findings from the 2015-16 school year as well as a comparison of those results with those outlined in the 2014-15 TEI evaluation report (Douglas & Ure, December 2015).

2 In 2009, the Dallas Independent School District participated in the Measures of Effective Teaching (MET) project to test new methods of measuring effective teaching. The MET project was based on three ideas: when possible, teachers’ evaluations should include the achievement gains of their students; additional components such as classroom observations or student feedback should be related to student achievement gains; and that the measure should include teacher feedback about practice to support teacher growth and development. The major findings of the MET project were that teacher evaluation systems should measure effective teaching by setting expectations, using multiple measures, and balancing weights; ensure high-quality data by monitoring validity, ensuring reliability, and assuring accuracy; and invest in improvement by making meaningful distinctions, prioritizing support and feedback, and using data for decisions at all levels. More about the MET project can be found at http://www.metproject.org/. TEI was developed, in part, with reflection on the work from the MET project.

3 A full description of TEI can be found in the TEI Teacher Guidebook available on the Dallas ISD website. The guidebook is available at http://www.dallasisd.org/Page/28269. Other TEI resources are also available on this page.

MAJOR EVALUATION QUESTIONS AND RESULTS

What were the program components of TEI?

Methodology

The Evaluation and Assessment (E&A) department evaluators reviewed program documentation in order to determine the purpose and scope of the TEI program.

Results

Defining Excellence

Teacher Performance

The teacher performance rubric consists of the following four domains: planning and preparation, instructional practice, classroom culture, and professionalism and collaboration. Certified TEI evaluators collect evidence throughout the year about teachers’ planning and preparation, and professionalism and collaboration. Certified TEI evaluators observe instructional practices and classroom culture through a series of classroom observations in the form of spot observations (10-15 minutes), an extended observation (at least 45 minutes), and any other informal observations conducted throughout the year. Teachers receive feedback after each of these observations. Teachers also receive a summative performance evaluation. Certified TEI evaluators calculate the summative performance score by assigning points for each domain based on evidence collected throughout the year (i.e. spot observation scores and feedback, extended observation scores and feedback, and informal observations/artifacts).

Student Achievement

Student achievement indicators, used to calculate a teacher’s achievement score, are comprised of multiple measures of student achievement whenever possible. Examples of measures include State of Texas Assessments of Academic Readiness (STAAR), the TerraNova/SUPERA, and Assessment of Course Performance (ACP) exams. Student Learning Objectives (SLOs; i.e., measures of student growth during the year based on assessments other than standardized assessments) are also included in a teacher’s achievement score. For the purposes of TEI, teachers are classified into one of four categories labeled A through D. A teacher’s category is based on which components are available for each teacher. Once a category is determined, the components (teacher performance, student achievement, and student experience) and weights that are used to calculate a teacher’s final rating are assigned. Table 1 provides

5 The TEI evaluator certification is made up of three stages: TEI system knowledge, rater accuracy, and an observation and coaching field experience. Dallas ISD staff members responsible for completing teacher evaluations for the 2015-16 school year, including employees who transferred into an administrator position, were required to complete the certification within 30 instructional days from the hire date. Returning administrators were required to be recertified each year and pass the certification exam again. Any classroom observations conducted prior to evaluators receiving their certification did not count as part of teachers’ evaluations. In addition to the certification training, principals received TEI information during their principal meetings. Principals were responsible for taking this information back to their campuses and sharing it with assistant principals and teachers.
an overview of the types of teachers in each category and the weights that are given to the different components.

Table 1: Teacher Categories and Associated Component Weights

<table>
<thead>
<tr>
<th>Teacher Category</th>
<th>Teacher Performance</th>
<th>Student Achievement</th>
<th>Student Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A – Most grade 3-12 teachers whose students take an ACP or a STAAR, including most K-5 teachers</td>
<td>50%</td>
<td>35%</td>
<td>15%</td>
</tr>
<tr>
<td>Category B – Most K-2 teachers whose students take an ACP or TerraNova/SUPERA</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
</tr>
<tr>
<td>Category C – Most grade 3-12 teachers whose students do not take an ACP or a STAAR but who are able to complete a student survey (e.g., CTE teachers)</td>
<td>65%</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Category D – Any teacher whose students do not take an ACP or STAAR nor are eligible to complete a student survey (e.g., pre-K teachers, teachers not-of-record such as SPED inclusion teachers, TAG teachers)</td>
<td>80%</td>
<td>20%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total student achievement is made up of up to three separate measures: (a) **teacher-level student achievement** measure(s), (b) the **school STAAR** measure, and (c) **Student Learning Objective** (SLO) points. All templates included the school STAAR and SLO as part of total student achievement. Templates for Category A/B teachers also included teacher-level student achievement measures. The total student achievement measure was worth up to 35 points for Category A/B teachers and 20 points for Category C/D teachers.

Teacher-level student achievement measures use standardized test scores predefined by a teacher’s template to measure student mastery or growth. Standardized tests that are used for this measure include STAAR, ACPs, TerraNova/SUPERA, and/or Texas English Language Proficiency Assessment System (TELPAS). The maximum points awarded for teacher-level student achievement was 25 points for Category A/B.

The **school STAAR** measure is a school-level measure introduced to reward collaboration among teachers from different grades and content areas within a school. Every teacher within a particular school receives the same base points for the school STAAR measure. The maximum School STAAR points possible is five points for Category A/B teachers and 10 points for Category C/D teachers.

SLOs are a measure of student growth during the year based on assessments that are not a part of the standardized assessments already included in the template. Teachers establish their SLO at the beginning of the year with the approval of their TEI evaluator, and they assess student achievement of the SLO at the end of the year. Points are awarded for both setting and accomplishing the SLO based on a rubric. The maximum points awarded for the SLO is five points for Category A/B and 10 points for Category C/D teachers.

6 For future evaluations, it will be important to note that the number of ACPs in 2016-17 decreased from previous school years. For elementary schools, ACP exams were reduced to only Reading and Math in Grades K-5, plus Grade 4 Language Arts and Grade 5 Science. All second semester ACP exams were eliminated in Grades K-5. For secondary schools, second semester ACPs were eliminated if there was a corresponding STAAR exam given in May. This included all courses with a corresponding STAAR exam regardless of when the STAAR exam was given. Thus, second semester Reading and ESL ACPs in Middle School were eliminated, and English I and English II (plus their ESL counterparts) ACPs in High School were eliminated.
C/D. For a small number of teachers, a School STAAR score is not available because the school does not have enough students to compute a reliable score. In these instances, the maximum SLO points awarded is 10 points for Category A/B and 20 points for Category C/D.

Student Experience

The Evaluation and Assessment department administers age-appropriate student surveys to students in grades 3-12, in both English and Spanish. Dallas ISD contracted with Panorama Education, to administer the open source student survey. The survey is confidential and solicits information about students’ perceptions regarding their teachers’ levels of care, support, and expectations for students, as well as instructional methods and delivery. Students are eligible to participate in the survey based on attendance, instructional setting, and language proficiency. Each student completes two surveys based on random assignment of students’ teachers.

Distinguished Teacher Review (DTR)

Distinguished teachers are those who earn a rating of Proficient II or higher on their evaluation and achieve high scores in teacher performance, student achievement, and student experience (if applicable). These teachers must meet additional performance criteria assessed through a separate review process called the Distinguished Teacher Review (DTR). The additional performance criteria include: verification of the teacher’s quality of instruction, leadership, lifelong learning, and contributions to the profession.

Teachers serving in Tier I schools (those schools that have not met state or federal accountability standards) can also receive additional points.

The DTR eligibility criteria changed slightly for the second year of implementation during the 2015-16 school year. These criteria are expected to remain in place for 2015-16 and all future school years, and are as follows:

- Teachers must be in at least their third year of service in the current school year.
- Teachers must be in the top 25 percent of the average evaluation score for their teacher category.
- Teachers must have received 65 points on the summative performance evaluation in the prior year. Teachers new to Dallas ISD must receive 65 points on the summative performance evaluation completed by December 1st of the current school year.

7 Further information about the student experience component can be found on the Dallas ISD website at http://tei.dallasisd.org/home/resources/. The Student Experience Survey Fact Sheet document provides information about all aspects of the survey.

8 For the 2016-17 school year, the requirement that external evaluators observe DTR-eligible teachers was removed from the DTR review process. Going forward, the DTR process will only include the DTR Application through which DTR-eligible teachers can earn up to 14 points by demonstrating examples of their leadership, lifelong learning and contributions to the profession. For teachers who underwent DTR in the 2015-16 school year and choose not to reapply during the 2016-17 school year, 2015-16 DTR observation points will not roll over onto the Scorecard released September 2017.

9 More information about the DTR eligibility criteria and potential exceptions can be found on the TEI resource page at http://tei.dallasisd.org/home-2/resources/.
• Teachers must have received at least half of available points for combined student achievement and student experience scores in the prior school year.

Supporting Excellence

While Dallas ISD teachers were not required to attend professional development during the 2015-16 school year, the principals provided professional development sessions for teachers at their campuses across multiple learning contexts. The professional development provided throughout the 2015-16 school year was designed to help Progressing II teachers become proficient teachers, Proficient I teachers become Distinguished teachers, and Distinguished teachers to grow in their teacher leadership capacities. These professional development sessions were focused on fostering self-facilitated learning opportunities, enhancing one-on-one coaching supports, empowering teacher teams, increasing whole-group training offerings, providing summer school learning labs, building robust workshops, and using a professional development planner.

All teachers evaluated under TEI were required to complete an individualized Professional Development Plan to guide professional development conversations between the teacher and evaluator. The Professional Development Plan was not scored because it provided support that was aligned to the teacher performance rubric. Each plan was differentiated based on teachers’ needs and areas of focus, which was generally aligned with their school’s action plan.

Changes to Professional Development for the 2016-17 School Year

There were two primary changes to the Supporting Excellence section of TEI for the 2016-17 school year. First, all Dallas ISD teachers were required to attend 14 credit hours of professional development. While professional development sessions were made available to teachers during the 2015-16 school year, there were no required hours of professional development. Second, the amount of required professional development was differentiated based on teacher TEI summative scores (Figure 1). Specifically, teachers with a summative score between zero and 54 were required to attend 10.5 credits of professional development from the Dallas ISD and 3.5 credits from professional development sessions approved by the administration. Teachers with summative scores between 55 and 74 were required to attend seven credits of professional development from the Dallas ISD and seven credits from professional development sessions approved by the administration. Teachers with summative scores between 75 and 100 were required to attend 3.5 credits of professional development from the Dallas ISD and 10.5 credits from professional development sessions approved by the administration.
Rewarding Excellence

As part of the Teacher Excellence Initiative, the district created an opportunity to align teacher compensation with student learning and growth in an effort to retain and recruit highly qualified teachers. The compensation system focuses on effective teaching – defined through teacher performance, student experiences, and student achievement. Salaries are differentiated to reward teachers who perform well and raise student achievement results, rather than using years of service and level of education to calculate salary. The compensation plan went into effect during the fall of the 2014-15 school year. Teachers’ compensation levels were determined using TEI effectiveness levels and application of implementation parameters related to minimum and maximum salaries, and years of teaching experience. In order to maintain the financial security of the district, the compensation plan was designed to consume approximately the same amount of the budget as the traditional salary schedule, and was based on a “target distribution” of effectiveness levels.

What were the demographic characteristics of teachers?

Methodology

The E&A evaluators retrieved the district personnel file (created on April 11, 2016) to analyze teacher demographics data during the 2015-16 school year. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and IBM SPSS Statistics (SPSS).

Results

TEI data were available for 10,188 teachers during the 2015-16 school year. Demographic information for teachers in Dallas ISD can be found in Figure 2.
Figure 2: 2015-16 TEI Teacher Demographics

Note: Percentages may not add to 100 percent due to rounding.

Figure 3 shows the percentage of teachers that fell into different characteristic groups. For example, of the 10,188 teachers for whom data were available in 2015-16, 15 percent worked at an improvement required (IR) campus, 13 percent worked at an Imagine 2020 campus, and 3 percent worked at an Accelerating Campus Instruction (ACE) campus. In addition, 16 percent of those 10,188 teachers had received Distinguished Teacher status. At the end of the 2015-16 school year, 85 percent of teachers were still employed with the district.
The Accelerating Campus Excellence (ACE) initiative began in 2015-16 and was designed around the principle that transforming schools requires strong leadership and effective teachers enveloped in an environment of high expectations for students and staff. The ACE program incentivized (via competitive stipends) top teachers, according to TEI effectiveness levels, and principals to relocate to some of the district’s most challenged schools. In 2015-16, the program began with seven schools that were designated as Improvement Required (IR) by the Texas Education Agency. These schools include four elementary schools (Annie Webb Blanton, Roger Q. Mills, Elisha M. Pease, and Umphrey Lee) and three middle schools (Billy Earl Dade, Thomas A. Edison, and Sarah Zumwalt). Six of the seven ACE campuses were removed from the state’s Improvement Required (IR) status in the first year of the program. The original seven campuses remained in the program for a second year in 2016-17 (Palladino, 2016).
TEI moves the district from a tenure-based pay system, to a pay-for-performance system. Teachers’ creditable years of service ranged from zero (first-year teachers) to 58 years (see Figure 4). The median creditable years of service was seven years, and approximately 24 percent of the teachers had either zero or one creditable years of service (first or second year teachers, respectively).

Figure 4: 2015-16 Creditable Years of Service

What were the results of the Teacher Performance component of TEI?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided data from Schoolnet (created on November 16, 2016) for the teacher performance component of TEI. The data included scores for spot and extended observations and summative performance evaluations. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. Data were analyzed using Microsoft Excel and SPSS.

Results

Spot Observations

Spot observations consisted of brief 10-15 minute observations by a certified TEI evaluator, which was typically a principal or assistant principal. Teachers were rated on five of the 19 indicators on the teacher performance rubric. While the number of recorded spot observations totaled 91,601, the number of spot observations that teachers received varied based on their prior year TEI effectiveness level. A teacher without a prior year effectiveness level or rated Progressing II or below received a minimum of ten spot observations. Teachers who received an effectiveness level of Proficient I received a minimum of eight spot observations. Distinguished teachers (Proficient II and above) received a minimum of six spot observations. Teachers who were new to the Dallas ISD, but underwent the Distinguished Teacher Review (DTR) process in their first year with the Dallas ISD, received a minimum of eight spot observations. In circumstances in which teachers were at a particular school for less than a full year (e.g., leave of absence, mid-year hire), teacher received a reduced, pro-rated minimum number of spot observations. Figure 5
includes the distribution of teachers' average scores across all spot observations during the 2015-16 school year. The average score was 1.88 out of three possible points.

Figure 5: Spot Observation Score Distribution

![Spot Observation Score Distribution](image)

One of the primary purposes of spot observations is to support teacher growth through frequent feedback. After observations, TEI evaluators were expected to provide feedback within two working days of the spot observation to help teachers improve the areas that were measured during the spot observation. Ideally, teachers’ observation scores should have increased during the course of the school year. To assess change over time, the difference between first and last spot observation scores was calculated. Teachers were included in the analysis only if they 1) had two or more spot observations, 2) if the first observation was conducted during the months of August, September, or October of 2015, and 3) the final observation was conducted in April, May, or June of 2016. This ensured that there was sufficient time between the first and last observation for change to occur. The number of teachers who met these requirements was 6,750.

Over the course of the school year, there was a statistically and practically significant increase in teachers’ spot observation scores on the five indicators from the teacher performance rubric and their overall score (see Table 2).

Table 2: Growth between First and Last Spot Observations

<table>
<thead>
<tr>
<th>Indicator</th>
<th>First Observation Average</th>
<th>Last Observation Average</th>
<th>Diff.</th>
<th>t</th>
<th>Sig.</th>
<th>Cohen's d*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Establishes clear, aligned standards-based lesson objective(s)</td>
<td>1.55</td>
<td>1.99</td>
<td>0.44</td>
<td>53.23</td>
<td><.01</td>
<td>0.81</td>
</tr>
<tr>
<td>2.2 Measures student mastery through a demonstration of learning (DOL)</td>
<td>1.53</td>
<td>1.97</td>
<td>0.44</td>
<td>41.66</td>
<td><.01</td>
<td>0.76</td>
</tr>
<tr>
<td>2.3 Clearly presents instructional content</td>
<td>1.63</td>
<td>2.06</td>
<td>0.43</td>
<td>60.73</td>
<td><.01</td>
<td>0.83</td>
</tr>
<tr>
<td>2.5 Engages students at all learning levels in rigorous work</td>
<td>1.58</td>
<td>2.03</td>
<td>0.45</td>
<td>62.17</td>
<td><.01</td>
<td>0.82</td>
</tr>
<tr>
<td>3.1 Maximizes instructional time</td>
<td>1.79</td>
<td>2.17</td>
<td>0.38</td>
<td>52.44</td>
<td><.01</td>
<td>0.70</td>
</tr>
<tr>
<td>Overall</td>
<td>1.62</td>
<td>2.05</td>
<td>0.43</td>
<td>72.45</td>
<td><.01</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Note: Diff. = Difference between the average of the last observation scores and the average of the first observation scores.

Cohen’s d values of .20, .50, and .80 are considered small, medium, and large, respectively (Cohen, 1992).
Summative Performance Evaluation

Teacher performance scores were based on teachers’ summative performance evaluations given by their primary TEI evaluator, who was generally their principal or assistant principal. The evaluator gave each teacher a score from zero to three (0=Unsatisfactory, 1=Progressing, 2=Proficient, 3=Exemplary) on 19 different indicators across four domains based on a rubric describing how a teacher at each level performs. The indicator scores were weighted and combined to calculate a final summative performance evaluation score ranging from one to 100. When assigning summative performance evaluation scores, the evaluators considered all evidence including spot, extended, and informal observations. Figure 6 shows the distribution of summative performance evaluation scores across all 10,142 teachers. The mean and median were almost identical with a mean of 71.3 and a median, or 50th percentile, of 72.0. Because a score of 67 can be achieved by receiving a two (Proficient) on all items, this indicated that teachers were performing slightly better on average than proficient across the summative performance evaluation rubric. Compared to 2014-15, more summative performance evaluation scores in 2015-16 were on the higher end of the distribution (Figure 6). However, it is not possible to know whether scores increased because teacher performance improved, if scores were being inflated by the TEI evaluators, or if lower performing teachers were leaving the district.

Figure 6: Distribution of Summative Performance Evaluation Scores

Across the district, when examining the 19 different indicators used for the summative performance evaluation, the percentage of teachers who received a two (Proficient) or three (Exemplary) varied by indicator (see Table 3). The indicator with the lowest percentage of proficient and above ratings was 2.6 Activates higher-order thinking skills (62.8%). The indicator with the highest percentage of proficient and above teachers was 3.3 Maintains a welcoming environment that promotes learning and positive interactions (93.7%).
Table 3: Percentage of Teachers Who Received a Proficient or Exemplary Rating by Summative Evaluation Indicator

<table>
<thead>
<tr>
<th>Summative Evaluation Indicators</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Demonstrates knowledge of content, concepts, and skills</td>
<td>88.5%</td>
</tr>
<tr>
<td>1.2 Demonstrates knowledge of students</td>
<td>89.2%</td>
</tr>
<tr>
<td>1.3 Plans or selects aligned formative and summative assessments</td>
<td>89.3%</td>
</tr>
<tr>
<td>1.4 Integrates monitoring of student data into instruction</td>
<td>86.4%</td>
</tr>
<tr>
<td>1.5 Develops standards-based unit and lesson plans</td>
<td>89.5%</td>
</tr>
<tr>
<td>2.1 Establishes clear, aligned standards-based lesson objective(s)</td>
<td>87.6%</td>
</tr>
<tr>
<td>2.2 Measures student mastery through a demonstration of learning (DOL)</td>
<td>83.7%</td>
</tr>
<tr>
<td>2.3 Clearly presents instructional content</td>
<td>87.3%</td>
</tr>
<tr>
<td>2.4 Checks for academic understanding</td>
<td>81.9%</td>
</tr>
<tr>
<td>2.5 Engages students at all learning levels in rigorous work</td>
<td>81.3%</td>
</tr>
<tr>
<td>2.6 Activates higher-order thinking skills</td>
<td>62.8%</td>
</tr>
<tr>
<td>3.1 Maximizes instructional time</td>
<td>88.1%</td>
</tr>
<tr>
<td>3.2 Maintains high student motivation</td>
<td>87.9%</td>
</tr>
<tr>
<td>3.3 Maintains a welcoming environment that promotes learning and positive interactions</td>
<td>93.7%</td>
</tr>
<tr>
<td>4.1 Models good attendance for students</td>
<td>70.3%</td>
</tr>
<tr>
<td>4.2 Follows policies and procedures, and maintains accurate student records</td>
<td>91.2%</td>
</tr>
<tr>
<td>4.3 Engages in professional development</td>
<td>92.2%</td>
</tr>
<tr>
<td>4.4 Engages in professional community</td>
<td>93.0%</td>
</tr>
<tr>
<td>4.5 Establishes relationships with families and community</td>
<td>87.7%</td>
</tr>
<tr>
<td>Overall Summative Evaluation Score</td>
<td>71.3</td>
</tr>
</tbody>
</table>

Note: N = 10,142

Summative performance evaluation scores also were found to vary by school level (high, middle, and elementary; Figure 7). A One-Way Analysis of Variance (ANOVA) was conducted to determine the mean (M) difference among overall summative performance evaluation scores across school level. The results indicated that there was a statistically significant difference among high school, middle school, and elementary school, \(F(2, 2878) = 32.61, \ p < .001 \). Bonferroni post hoc tests revealed that the overall summative performance evaluation score for middle school teachers (M = 68.63; SD = 15.99) was significantly lower than for high school (M = 71.16; SD = 14.98; Cohen’s d = 0.16\(^{11}\)) and elementary school (M = 71.90; SD = 15.57; Cohen’s d = 0.21) teachers. However, the practical difference between these groups was relatively weak, and a statistically significant difference was not found between high school and elementary school teachers.

\(^{11}\) Cohen’s d values of .20, .50, and .80 are considered small, medium, and large, respectively (Cohen, 1992).
The average summative performance evaluation scores by creditable years of service can be found in Figure 8. Teachers with zero creditable years of service (i.e., first year teachers) had the lowest average summative performance evaluation scores (59.3), but the average scores gradually increased as years of service increased and plateaued between three and five creditable years of service.

Comparing Spot and Summative Scores

TEI evaluators used a holistic approach and considered all of the evidence (spot, extended, and informal observations) collected throughout the year when determining scores for the various indicators on the summative evaluation. E&A evaluators compared summative scores with other formal observation scores to see if a relationship existed. The scores for the indicators in both the spot observations and summative evaluation were highly correlated, which indicated that TEI evaluators’ summative scores were aligned with what they observed in the classroom. Table 4 contains the correlations between teachers’ average spot observation score for each indicator and their indicator score on the summative evaluation.
Table 4: Correlations between Average Spot Observation Scores and Summative Performance Evaluation Scores

<table>
<thead>
<tr>
<th>Indicator</th>
<th>r*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Establishes clear, aligned standards-based lesson objective(s)</td>
<td>0.71</td>
</tr>
<tr>
<td>2.2 Measures student mastery through a demonstration of learning (DOL)</td>
<td>0.68</td>
</tr>
<tr>
<td>2.3 Clearly presents instructional content</td>
<td>0.78</td>
</tr>
<tr>
<td>2.5 Engages students at all learning levels in rigorous work</td>
<td>0.77</td>
</tr>
<tr>
<td>3.1 Maximizes instructional time</td>
<td>0.76</td>
</tr>
<tr>
<td>Overall Observation Score</td>
<td>0.80</td>
</tr>
</tbody>
</table>

* .10 = small effect size, .30 = medium effect size, .50 = large effect size

Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding the results of the teacher performance component of TEI are as follows:

1) **On average, spot observation scores increased from 2014-15 to 2015-16.** The average spot observation score increased from 1.75 in 2014-15 to 1.88 in 2015-16. The average first spot observation score for almost every indicator increased from 2014-15 (1.36-1.66) to 2015-16 (1.55-1.79), and the average last spot observation score for every indicator increased from 2014-15 (1.77-1.97) to 2015-16 (1.97-2.17). For both the 2014-15 and 2015-16 school years, the average last spot observation for each indicator was significantly higher than the average first spot observation score. In addition, the effect size of this difference increased from 2014-15 (Cohen’s \(d\) = 0.16-0.53) to 2015-16 (Cohen’s \(d\) = 0.70-0.90).

2) **Summative performance evaluation scores increased from 2014-15 to 2015-16.** Compared to 2014-15, more summative performance evaluation scores in 2015-16 were on the higher end of the distribution. As a result, the 25th, 50th, and 75th percentiles for the summative performance evaluation scores increased from 57, 67, and 77 in 2014-15 to 62, 72, and 83 in 2015-16, respectively. In addition, the percentage of teachers who received a proficient or exemplary rating on their summative performance evaluation increased on 18 of 19 indicators from 2014-15 to 2015-16. Finally, average summative performance evaluation scores across school level (high, middle, elementary) increased from 2014-15 (63.8-68.8) to 2015-16 (68.6-71.9).

3) **The strength of the relationship between spot observations scores and summative performance evaluation scores increased from 2014-15 to 2015-16.** The correlations between teachers’ average spot observation scores for each indicator and their summative performance evaluation scores increased from 2014-15 (\(r = .43-.74\)) to 2015-16 (\(r = .68-.80\)).
What were the results of the Total Student Achievement component of TEI?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data (created November 1, 2016), which included scores for the student achievement component of TEI. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

Total Student Achievement12

The manager of TEI provided a description of how total student achievement is calculated for TEI:

A teacher’s achievement score is comprised of multiple measures of student achievement whenever possible. The achievement score makes up 35 percent of the overall evaluation for Category A and B teachers and 20 percent of the evaluation for Category C and D teachers. Every teacher has an achievement template, which defines the measures that are included in the achievement portion of the overall evaluation. Multiple measures and metrics, whenever possible, are used to assess student learning. For Category A and B teachers, the various measures of student achievement include (where possible) two types of metrics: absolute and relative. When multiple metrics are used, the teacher always receives the one resulting in the highest number of points.

The distribution of the total student achievement scores by TEI category are shown in Figure 9. The application of the targeted distribution provided uniformity between Category A and Category B distributions, but the difference in average scores for Categories A (M = 20.3) and B (M = 20.6) was not statistically significant (p = .13). For Category C and D teachers, there were more total student achievement scores on the higher end of the distribution, which may be attributable to the skewed nature of SLO scores (discussed in SLO measure section) that accounted for 50 percent of the total student achievement score for most teachers in these categories. The difference between the average scores for Categories C (M = 12.7) and D (M = 13.1) was statistically significant (p < .001) but not practically significant, Cohen’s d = 0.08.

12 Total student achievement includes measures of teacher-level student achievement, school STAAR, and Student Learning Objective (SLO) points.
Figure 9: Total Student Achievement Score Distribution by Category

The average total student achievement scores by creditable years of service for Categories A, B, C, and D teachers can be found in Figure 10. For Category A and B teachers who had zero or one creditable years of service (first or second year teachers, respectively), they received the lowest average score for total student achievement (18.1-19.8). Total student achievement scores for teachers with two or more creditable years of service remained relatively consistent as years of service increased (20.4-21.2). For Category C and D teachers who had zero creditable years of service, they received the lowest average score for total student achievement (16.3). Total student achievement scores for teachers with one or more creditable years of service remained relatively consistent as years of service increased (18.0-18.9). These findings provide initial evidence that more years of teaching does not necessarily lead to improvements in...

teacher effectiveness. This supports the district’s decision to move from a tenure-based pay system to a pay-for-performance system.

Figure 10: Average Total Student Achievement by Creditable Years of Service

Teacher-Level Student Achievement

Only Category A/B teachers received points from the teacher-level student achievement measure. Points from this measure ranged from zero to 25. Figure 11 shows the distribution of points among teachers in the two categories. As stated in the previous section, the application of the targeted distribution provided uniformity between category distributions. Many teachers had only one measure available on which to be evaluated (e.g., if a teacher only had the ACP semester 1 measure). In this case, measures were

13 Teacher-level student achievement measures used standardized test scores predefined by a teacher’s template to measure student mastery or growth.
The difference between the averages for Categories A ($M = 13.7$) and B ($M = 13.6$) was not statistically significant, $t(7121) = .10, p = .92$.

Figure 11: Distribution of Teacher-Level Student Achievement Scores by Category

Each school received an overall school STAAR score that contributed to teachers’ total student achievement scores. The points ranged from zero to five and followed the target distribution. School STAAR points were worth two weights for teachers in Categories C and D so their base points were doubled. For the purpose of this analysis, only unweighted base points were used for all categories to create comparability.

The average school STAAR base points teachers received across the district was 2.63. The actual distribution of scores across schools approximated the target distribution (Figure 12).

14 The TEI Rulebook states that alternate weighting schemes must be used when measures from an achievement template are missing or cannot be computed for a teacher. Weights from missing measures are reassigned to other achievement measures on the template. More information is available on the TEI resource page at http://tei.dallasisd.org/home-2/resources/.

15 The school STAAR measure was a school-level measure introduced to reward collaboration among teachers from different grades and content areas within a school.
Student Learning Objective (SLO) Points

Teachers could receive a maximum of five SLO base points. Every template included SLO points which accounted for five percent, 10 percent, or 20 percent of a teacher’s evaluation score. The weight the points were given was dependent on teachers’ categories and whether or not they had a School STAAR score. SLO points accounted for five percent of teachers’ evaluation scores in Categories A and B. For teachers in categories C and D, SLO points were given two weights (10% of their evaluation score). Teachers without a school STAAR score in Categories A and B were given two weights (10%) and in Categories C and D were given four weights (20%).

For the 2015-16 school year, 1,344 teachers did not have any SLO points. Their points were invalid or otherwise unavailable. SLO points were considered invalid if points were missing for either the “setting” or “accomplishment” stage of the process. The following statistics are based on the 8,844 teachers with SLO points.

Figure 13 shows the distribution of SLO base points. For those whose SLO points were weighted, their points were transformed back into the unweighted base points to make them comparable with the other SLO points. About two thirds (66.4%) of teachers received the maximum number of points.

16 An SLO was a measure of student growth during the year based on assessments that are not a part of the standardized assessments already included in the template.
Correlation Among Student Achievement Measures

In order to explore the relationships among the various measures of the total student achievement score, correlations were calculated by teacher category because the weights of the measures change from category to category. A Pearson correlation (r) was used to measure the association between teacher-level student achievement and school STAAR. There was a moderately strong correlation between the teacher-level student achievement measure and the school STAAR score among teachers in Category A, $r = .423$, $p < .001$. However, the correlation between these two measures for Category B teachers was smaller, $r = .268$, $p < .001$. The difference in strength of the correlation between Category A and B teachers is most likely attributable to the fact that many Category A teachers had a measure based on STAAR scores of students in their classroom, and these STAAR scores are a subset of the school’s STAAR scores. Spearman’s rho (ρ) was used to measure the association between the SLO measure and the other two measures because SLO points were not normally distributed. The teacher-level student achievement and SLO measures had a small correlation for Categories A and B (see Table 5).

Table 5: Correlation between Total Student Achievement Measures

<table>
<thead>
<tr>
<th>Category</th>
<th>N</th>
<th>r</th>
<th>p</th>
<th>N</th>
<th>ρ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,041</td>
<td>0.423</td>
<td><.001</td>
<td>4,470</td>
<td>0.225</td>
<td><.001</td>
</tr>
<tr>
<td>B</td>
<td>2,082</td>
<td>0.268</td>
<td><.001</td>
<td>1,910</td>
<td>0.202</td>
<td><.001</td>
</tr>
</tbody>
</table>

Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding the results of the total student achievement component of TEI are as follows:

1) **Scores for total student achievement, teacher-level student achievement, and school STAAR were similar for both 2014-15 and 2015-16.** First, the average total student achievement scores for Categories A, B, C, and D in 2014-15 and 2015-16 were different by one point or less. Second, the average teacher-level student achievement scores were
identical for Category A teachers in 2014-15 and 2015-16, and the average score for Category B teachers slightly decreased from 14.8 in 2014-15 to 13.6 in 2015-16. Third, the average school STAAR base points that teachers received was 2.63 for both 2014-15 and 2015-16. As expected, the distribution of points for school STAAR performance approximated the target distribution for both 2014-15 and 2015-16.

2) The percentage of teachers who received the maximum number of SLO points increased from 2014-15 to 2015-16. Over half of teachers received the maximum number of points in 2014-15 (53.1%), and the number of teachers who received the maximum number of SLO points increased to 66.4 percent in 2015-16.

3) The strength of the relationship between teacher-level student achievement and school STAAR and between teacher-level student achievement and SLO remained consistent from 2014-15 to 2015-16. The Pearson r and Spearman rank-order (ρ) correlations between these variables remained relatively consistent from 2014-15 ($r = .195-.420; \rho = .192-.211$) to 2015-16 ($r = .268-.423; \rho = .202-.225$).

What were the results of the Student Experience component of TEI?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included scores for the student experience component of TEI. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

Student experience scores for 6,125 teachers were included in the TEI evaluation this year. Teachers did not receive a student experience score if they taught prekindergarten through second grade or if they did not have at least 10 students who took the survey. For teachers in Categories A and C, student experience points accounted for 15 percent of their final score. Teachers in Categories B and D did not receive student experience scores.

The student experience survey solicited information about five topics: pedagogical effectiveness, classroom environment, expectations and rigor, student engagement, and supportive relationships. The raw score for each category was the percentage of items with a positive response. This included the top two responses for questions with five-point scales and the top three responses for items with seven-point scales. The survey total was an average of these five scales. The survey totals were transformed into percentile ranks and then assigned a value that was a multiple of three, ranging between zero and 15 based on an established target distribution (see Table 6).
Table 6: Student Experience Points Target Distribution

<table>
<thead>
<tr>
<th>Point value</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentile range</td>
<td>1-3</td>
<td>4-15</td>
<td>16-40</td>
<td>41-80</td>
<td>81-92</td>
<td>93-99</td>
</tr>
<tr>
<td>Percentage of teachers</td>
<td>3%</td>
<td>12%</td>
<td>25%</td>
<td>40%</td>
<td>12%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Note: Table from 2015-16 TEI Guidebook.

The percentage of positive responses associated with each point value was calculated separately for the different school levels (elementary core, elementary non-core, middle, and high school) because younger students tended to give more positive responses about their teachers than older students. Table 7 shows the cut points used in the 2015-16 survey for each school level.

Table 7: Cut Points for Percentage of Items with Positive Responses by School Level

<table>
<thead>
<tr>
<th>Metric</th>
<th>Percentage Range</th>
<th>Points Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Value</td>
<td>High Value</td>
</tr>
<tr>
<td>Elementary Core</td>
<td>0%</td>
<td>63%</td>
</tr>
<tr>
<td>Percentage of items with positive responses</td>
<td>64%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>76%</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>84%</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>97%</td>
<td>100%</td>
</tr>
<tr>
<td>Elementary Non-Core</td>
<td>0%</td>
<td>54%</td>
</tr>
<tr>
<td>Percentage of items with positive responses</td>
<td>55%</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>67%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>76%</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td>86%</td>
<td>89%</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>Middle School</td>
<td>0%</td>
<td>36%</td>
</tr>
<tr>
<td>Percentage of items with positive responses</td>
<td>37%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>52%</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td>66%</td>
<td>79%</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td>86%</td>
<td>100%</td>
</tr>
<tr>
<td>High School</td>
<td>0%</td>
<td>37%</td>
</tr>
<tr>
<td>Percentage of items with positive responses</td>
<td>38%</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>54%</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>84%</td>
<td>89%</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Table from Student Survey – distribution of points earned document on the TEI website.

Student Experience

The percentage of items with a positive response on the student survey was found to vary by school level (elementary core, elementary non-core, middle, and high school; Figure 14). A One-Way ANOVA was conducted to determine the mean difference among the percentage of items with a positive response across school level. The results indicated that there was a statistically significant difference among elementary...
non-core, elementary core, middle school, and high school teachers $F(3, 6262) = 688.05, p < .001$. Bonferroni post hoc tests revealed that the percentage of items with a positive response on the student survey for elementary core teachers ($M = 84.82; SD = 9.79$) was significantly higher than elementary non-core ($M = 77.02; SD = 9.93; Cohen’s $d = 0.79$), middle school ($M = 66.77; SD = 14.30; Cohen’s $d = 1.49$), and high school teachers ($M = 70.44; SD = 15.15; Cohen’s $d = 1.12$). Cohen’s d effect sizes indicated that the practical differences between these groups were relatively large. The percentage of items with a positive response on the student survey for elementary non-core teachers was significantly higher than middle school (Cohen’s $d = 0.76$) and high school teachers (Cohen’s $d = 0.56$), which was a medium effect size. Lastly, the percentage of items with a positive response on the student survey for middle school teachers was significantly lower than high school (Cohen’s $d = 0.25$), but the practical difference between these groups was relatively small. It is important to note that the TEI system takes into account school level differences by applying cut points and the target distribution which builds equity into the system. The data presented in Figure 14 indicate that this methodology is justified.

Figure 14: Percentage of Items with a Positive Response by School Level

The average percentage of items with a positive response by creditable years of service can be found in Figure 15. Teachers with zero creditable years of service had the lowest average percentage of items with a positive response (71.0%). The average percentage increased until between three and five creditable years of service and gradually decreased as years of service increased. These findings again support the premise that a pay-for-performance system such as TEI is more appropriate than a tenure-based system given that teachers with more years of experience did not necessarily perform better than teachers with fewer years of experience – except for teachers with 0 to 1 years of creditable years of service.

17 0.20 = small effect size, 0.50 = medium effect size, 0.80 = large effect size
Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding the results of the student experience component of TEI are as follows:

1) **From 2014-15 to 2015-16, there was a slight increase in the percentage of positive responses on the student survey for middle and high school teachers.** In addition, percentage of positive responses for elementary core and elementary non-core teachers was not calculated for 2014-15. Thus, while the percentages of positive responses for middle school
and high school teachers increased from 2014-15 (64% and 65%, respectively) to 2015-16 (67% and 70%).

2) As expected, for both 2014-15 and 2015-16, the distribution of student experience scores approximated the target distribution.

What were the correlations among TEI Components?

Methodology

This section of the report examines how each component of TEI is associated, or correlated. It is important to know how each component is related so that we, as a district, can better understand how TEI evaluates teachers and to confirm that teachers' ratings are an accurate reflection of their performance. The evaluation examines whether teacher performance and student experience are aligned with student achievement.

The TEI department provided Scorecard data on November 1, 2016, which included scores for the student achievement and student experience components of TEI. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

Summative Performance Evaluation and Total Student Achievement

If the goal of the summative evaluation was to assess how teachers’ performance affects student learning, then there should be a relationship between summative performance evaluation scores and total student achievement measures. Typically, teachers who performed well on the summative evaluation should also have higher total student achievement scores than teachers who did not perform well.

Summative performance evaluation scores had a moderately strong relationship with total student achievement. The E&A evaluators ran separate analyses for teachers in Categories A and B and Categories C and D because the number of total student achievement points possible varied between the two sets of categories. For teachers in Categories A and B, the correlation between summative performance evaluation scores and total student achievement scores was moderately strong, \(r = .436, p < .001 \) (Figure 17). Teachers with higher summative performance evaluation scores tended to have higher total student achievement scores. As teachers and principals continue to engage in professional development, this correlation may continue to increase.

19 Pearson Product-moment Correlation \((r)\): .10 = weak, .30 = moderate, .50 = strong relationship
A positive relationship between teacher performance and student achievement also existed for Categories C and D teachers, but to a lesser degree than that of Category A and B teachers, $r = .261$, $p < .001$. Figure 18 displays this relationship. It should be noted that the total student achievement score for teachers in Categories C and D only included points from the School STAAR score (when available) and the SLO. These scores did not have teacher-level student achievement points based on standardized tests outside of the SLO. Improving the SLO measure may increase the correlation between these two components in the future.

Summative Performance Evaluation and Student Experience

TEI summative performance evaluation scores were moderately correlated with the percentage of positive responses on the student survey, $r = .332$, $p < .001$. Figure 19 plots each teacher's summative score and the percentage of positive responses on the student survey. Increases in percentage positive were associated with increases in summative performance evaluation scores. It is important to note that
summative performance evaluation scores and the student survey were based on an evaluation of teachers’ effectiveness in the classroom (i.e., their performance).

Figure 19: Relationship between Summative Performance Evaluation Score and Percentage of Positive Responses on Student Survey

Student Achievement and Student Experience

Teachers in Categories B and D are not included in this section because their students did not complete student surveys. The correlation between percentage of positive responses on the student survey and total student achievement scores for Category A teachers was weak to moderate, $r = .254$, $p < .001$. There was a slight increase in average achievement scores as student experience points increased (Figure 20). In this instance, the student survey measured teacher performance while student achievement was an indicator of student performance.

Figure 20: Relationship between Total Student Achievement Score and Percentage of Positive Responses on Student Survey – Category A

The relationship between the percentage of positive responses on the student survey and student achievement points among Category C teachers was weak, $r = .174$, $p < .001$ (see Figure 21). The strength
of this correlation may be attributable to the lack of variation in points for the SLO measure, which accounted for 50 percent of the student achievement score for Category C teachers.

Figure 21: Relationship between Total Student Achievement Score and Percentage of Positive Responses on Student Survey – Category C

Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding the correlations among TEI components are as follows:

1) The strength of the relationship between summative performance evaluation scores and total student achievement scores increased from 2014-15 to 2015-16. For Category A and B teachers, the Pearson r correlation between summative performance evaluation scores and total student achievement scores increased from .397 in 2014-15 to .436 in 2015-16. For Category C and D teachers, the Pearson r correlation between summative performance evaluation scores and total student achievement scores increased from .239 in 2014-15 to .261 in 2015-16.

2) The strength of the relationship between summative performance evaluation scores and student experience scores increased from 2014-15 to 2015-16. The Pearson r correlation between summative performance evaluation scores and student experience scores increased from .254 in 2014-15 to .332 in 2015-16.

3) The strength of the relationship between total student achievement and student experience scores increased from 2014-15 to 2015-16. For Category A and C teachers, the Pearson r correlation between total student achievement and student experience scores increased from 2014-15 ($r = .104-.210$) to 2015-16 ($r = .210-.254$).
What were the evaluation scores and evaluation ratings for TEI?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included scores for teachers’ evaluation scores and evaluation ratings. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Teacher performance, student achievement, and student experience scores were used to determine a final aggregated score known as the **evaluation score**. These scores ranged from 0 to 100 (up to 113 for DTR teachers). The evaluation scores were then transformed into **evaluation ratings**. **Evaluation ratings** were Unsatisfactory, Progressing I, Progressing II, Proficient I, Proficient II, Proficient III, and Exemplary. An established target distribution was used as a guide in assigning ratings. Table 8 shows the target distribution that was used to make cut points for converting the evaluation score into an evaluation rating. Separate cut points were calculated for each teacher category to ensure that one category did not have an advantage over another. Using the target distribution may result in teachers from different categories with the same evaluation score earning different evaluation ratings. Evaluation scores cannot be compared across categories, while evaluation ratings can.

Table 8: Evaluation Rating Target Distribution

<table>
<thead>
<tr>
<th>Evaluation Rating:</th>
<th>Uns</th>
<th>Progressing I</th>
<th>Progressing II</th>
<th>Proficient I</th>
<th>Proficient II</th>
<th>Proficient III</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A teachers</td>
<td>3%</td>
<td>12%</td>
<td>25%</td>
<td>40%</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Category B teachers</td>
<td>3%</td>
<td>12%</td>
<td>25%</td>
<td>40%</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Category C teachers</td>
<td>3%</td>
<td>12%</td>
<td>25%</td>
<td>40%</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Category D teachers</td>
<td>3%</td>
<td>12%</td>
<td>25%</td>
<td>40%</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Note: Table from TEI Teacher Guidebook 2015-16.

Results

Evaluation Scores

Evaluation scores were analyzed separately for each of the four teacher categories. Cut points for the ratings were calculated for each category separately, creating equity among the groups. Figure 22 shows their distributions.
Figure 22: Evaluation Score Frequencies by Category

Evaluation Ratings

The percentage of teachers in each evaluation rating level approximated the target distribution as shown in Figure 23.
Major changes from the 2014-15 school year to the 2015-16 school year regarding the evaluation scores and evaluation ratings for TEI are as follows:

1) **Teachers’ average evaluation score increased from 2014-15 to 2015-16.** For Category A, B, C, and D teachers, all of their average evaluation scores increased from 2014-15 (63.8-67.5) to 2015-16 (66.0-72.5).

2) **The percentage of teachers in each evaluation rating level approximated the target distribution for both 2014-15 and 2015-16.**

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included scores for teachers’ evaluation scores, evaluation ratings, and salary information. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Evaluation ratings were converted into **effectiveness levels** which were used to determine compensation. TEI eliminated the old salary schedule that was based on creditable years of service. Salaries are now based on nine effectiveness levels as shown in Table 9. The last two evaluation scores were averaged to determine the evaluation score, which then translated into the evaluation rating using the target distribution.
Table 9: Effectiveness Levels and Associated Salaries

<table>
<thead>
<tr>
<th>Unsat</th>
<th>Progressing</th>
<th>Proficient</th>
<th>Exemplary</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$47K</td>
<td>$51K</td>
<td>$53K</td>
<td>$56K</td>
<td>$60K</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>$74K</td>
<td>$82K</td>
<td>$90K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Figure from TEI Teacher Guidebook 2015-16.

Effectiveness levels were also determined by a set of rules. For instance, a teacher generally cannot move by more than one effectiveness level in one year. A teacher cannot go down a level unless there have been three consecutive years of lower evaluation ratings. Other rules include the following:

- Novice - All newly hired teachers with zero years of experience
- Progressing I – Requires completion of one year of service as a classroom teacher
- Progressing II - Requires completion of two years of service as a classroom teacher
- Proficient I - Requires completion of three years of service as a classroom teacher
- Proficient II and Above - Requires Distinguished Teacher Review
- Exemplary II - Requires at least one year as an Exemplary teacher
- Master - Requires at least two consecutive years as Exemplary II and at least four consecutive years as a distinguished teacher in a Tier One school

Figure 24 visually encapsulates this process of converting evaluation scores into evaluation ratings, effectiveness levels, and compensation levels.
Results

Effectiveness Levels

The majority of teachers scored in the Progressing I to Proficient I effectiveness level categories (see Figure 25) because of rule limitations described previously. First-year teachers could receive no more than a Progressing I level, and second-year teachers could receive no more than a Progressing II level. Teachers who did not go through the DTR process could receive no more than a Proficient I effectiveness level.

Note: From TEI Teacher Guidebook 2015-16.
In order to evaluate changes in compensation from 2015-16 to 2016-17, E&A evaluators compared teachers’ 2015-16 salary to their 2016-17 salary, as well as to their effectiveness level. Teachers who left the district ($n = 1,402$) or moved into a non-TEI position ($n = 111$) were excluded. Teachers who did not receive an effectiveness level ($n = 44$) were also excluded since it was impossible to estimate their current salary without an effectiveness level. Finally, teachers who were not full-time ($n = 1,148$) were excluded as their salaries were not comparable with full-time employee salaries. In all, 7,932 teachers remained in the population and were used to evaluate TEI compensation. Overall, nearly 58 percent ($n = 4,557$) of teachers received a salary increase. The median salary change among full-time teachers in TEI-coded teaching positions was $1,000. On average, teachers in each effectiveness level received a pay increase with the exception of teachers in the unsatisfactory level. Teachers in higher effectiveness levels received larger salary increases than those in lower levels. Figure 26 compares teachers’ average 2015-16 salary to their average 2016-17 salary by effectiveness level.
Because the old step system was based on creditable years of service, teachers who had been teaching longer within the district were earning more than their less experienced counterparts. When the district moved away from the tenure-based pay system, salaries were not lowered for teachers who were already earning more than the salary indicated for their effectiveness level. Similar to the first year of implementation of the TEI system, newer teachers received larger salary increases than more experienced teachers. Figure 27 shows the average salary increase by creditable years of service.
A teacher must have three consecutive years of receiving evaluation ratings below his or her current effectiveness level to warrant a decrease in their effectiveness level and salary. In 2015-16, no teachers went down in effectiveness level. Thirty-three percent ($n = 2,618$) of teachers had an effectiveness level which warranted less pay than they made during the 2015-16 school year. This was because experienced teachers who were already earning more than the salary assigned to their effectiveness level did not have their salaries lowered when the district moved to the TEI system. Furthermore, salary increases for the 2015-16 year were capped at $5,000. If a teacher’s effectiveness level warranted a salary increase greater than $5,000, the increase was capped. Nine percent ($n = 708$) of teachers fell into this category.
Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding compensation for TEI are as follows:

1) **Except for teachers in the unsatisfactory level, some teachers in every effectiveness level who stayed in a TEI position received a pay increase for 2014-15 and 2015-16.** Teachers in higher effectiveness levels generally received larger salary increases than those in lower levels for both 2014-15 and 2015-16.

2) **On average, teachers’ salaries increased more in 2014-15 than 2015-16.** While the percentage of teachers who received a pay increase decreased from 72 percent in 2014-15 to 58 percent in 2015-16, this was partially due to the number of teachers in 2014-15 whose salary was automatically increased to meet the minimum salary requirements for each effectiveness level.

What were the results for the Distinguished Teacher Review Process?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included data for the Distinguished Teacher Review (DTR) process of TEI. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

During the 2015-16 school year, 1,759 teachers were eligible for DTR. Of those, 1,592 (90.5%) successfully met all of the requirements and achieved a distinguished effectiveness level. This represented 18.9 percent of all teachers across the district. Distinguished teachers were eligible for five to 20 DTR points from the DTR application and observation process. Teachers who were DTR eligible while teaching at Tier 1 schools received an additional three or four points for teaching at a Tier 1 school for one or two years, respectively. In future years, teachers will be able to earn five points for teaching at a Tier 1 school for three years while DTR eligible.

Figure 28 shows the distribution of DTR points among teachers. The average number of points awarded across the district was 11.34. Approximately 27 percent (432 teachers) received an additional three or four points for teaching at a Tier 1 school.
Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding the DTR process for TEI are as follows:

1) **The percentage of teachers who achieved DTR status increased from 2014-15 to 2015-16.** While the average number of DTR points awarded by the district decreased from 12.4 in 2014-15 to 11.34 in 2015-16, the percentage of teachers who achieved DTR status increased from 11.6 percent in 2014-15 to 18.9 percent in 2015-16. This change was likely due to more teachers in 2015-16 receiving points that were concentrated around the average number of DTR points awarded.

What were retention rates for teachers?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The district personnel file (created on April 11, 2016) was retrieved to gather teacher retention status data. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

Approximately fifteen percent of TEI teachers did not return for the 2015-16 school year. Teachers who left the district could have left for a variety of reasons including retiring, being laid off/discharged, or quitting. Table 10 shows the reasons teachers left the district and the associated frequency. The majority of non-retained teachers quit (57.7%) while almost 28 percent retired. Layoffs and discharges accounted for over 11 percent of the non-retained teachers.
Table 10: Reasons Teachers Left the District

<table>
<thead>
<tr>
<th>Reasons for Leaving</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>9</td>
<td>2.9%</td>
</tr>
<tr>
<td>Deceased</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>Laid Off/Discharged</td>
<td>35</td>
<td>11.2%</td>
</tr>
<tr>
<td>Quit</td>
<td>180</td>
<td>57.7%</td>
</tr>
<tr>
<td>Retired</td>
<td>87</td>
<td>27.9%</td>
</tr>
<tr>
<td>Total</td>
<td>312</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 29 and Figure 30 show the percentage of teachers in each evaluation rating and effectiveness level that left the district, respectively. Forty percent of teachers with an unsatisfactory evaluation rating and effectiveness level were not retained. The percentage of non-retained teachers within each evaluation rating or effectiveness level decreased as the ratings and/or levels increased. No exemplary teachers left the district or moved out of TEI-coded positions. Thus, Dallas ISD retained effective teachers at higher rates than less effective teachers.

Figure 29: Retention Rates by Evaluation Rating

Note: Percentages may not add to 100 percent due to rounding.
Major changes from the 2014-15 school year to the 2015-16 school year regarding retention rates are as follows:

1) **The percentage of teachers who left Dallas ISD decreased from 2014-15 to 2015-16.** The percentage of teachers who left the district decreased from approximately 16 percent in 2014-15 to approximately 15 percent in 2015-16.

2) **Overall, retention rates increased in each effectiveness level from 2014-15 to 2015-16.** The retention rates for each effectiveness level increased from 2014-15 (44%-91%) to 2015-16 (59%-100%). However, the smallest retention rates were for teachers in the Unsatisfactory or Progressing I classification for both 2014-15 (44%-77%) and 2015-16 (58%-79%). This indicated that a smaller percentage of low performing teachers than high performing teachers remained in the district for both school years.
What were the results for TEI performance by high school feeder pattern?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included scores for the student achievement and student experience components of TEI. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

Results

The results of this section show that ACE campuses were among the top performing feeder patterns across the district. These results were hoped for given that higher performing teachers were incentivized to relocate to ACE campuses for the 2015-16 school year, the beginning of the initiative. This means that in some cases lower performing teachers from those campuses for 2014-15 were moved out and higher performing teachers took their place. The review of summative performance evaluation scores, total student achievement, school STAAR, student experience, and distinguished teacher status data showed that the ACE initiative was successful in achieving the expected results.

Summative Evaluation Averages by Feeder Pattern

Average summative scores varied across feeder patterns (see Figure 31). The Woodrow Wilson feeder pattern had the highest average of 81.3, and the Carter feeder pattern had the lowest average of 65.7.

Figure 31: Average Summative Performance Evaluation Score by High School Feeder Pattern

Note: ACE = Accelerating Campus Excellence; SOC = South Oak Cliff; W-H = Wilmer-Hutchins.

20 The analyses of feeder patterns in this section did not include magnet or choice schools.
Total Student Achievement Averages by Feeder Pattern

Total student achievement scores were compared across high school feeder patterns (see Figure 32). For Categories A and B, the average score ranged from 23.3 (Wilson and Hillcrest feeders) to 16.3 (Madison feeder), with a district average of 20.4. An ANOVA comparing average student achievement scores for feeder patterns found a statistically significant difference among feeder patterns, $F(22, 7,100) = 23.42$, $p < .001$, but these differences were not practically significant, $f = 0.07$. Results were similar to the differences among feeder patterns for Categories C and D. An ANOVA confirmed that the differences among feeder patterns was statistically significant, $F(22, 2,885) = 9.54$, $p < .001$, but not practically significant, $f = 0.07$.

Figure 32: Average Total Achievement Scores by Category and Feeder Pattern

Note: ACE = Accelerating Campus Excellence; SOC = South Oak Cliff; W-H = Wilmer-Hutchins.

21 $0.10 = \text{small}$, $0.25 = \text{medium}$, and $0.40 = \text{large effect size}$.
Average School STAAR scores varied across high school feeder patterns with the highest average in the Wilson feeder pattern (4.7) and the lowest in the Madison feeder pattern (2.1; Figure 33).

Figure 33: Average School STAAR Score by High School Feeder Pattern

Note: ACE = Accelerating Campus Excellence; SOC = South Oak Cliff; W-H = Wilmer-Hutchins.

Average Student Experience Score by Feeder Pattern

Average student experience scores varied across high school feeder patterns, ranging from 9.4 (ACE) to 6.6 (Madison; see Figure 34). The student experience averages across feeder patterns did not follow the general pattern found in the other TEI components.

Figure 34: Average Student Experience Score by High School Feeder Pattern

Note: ACE = Accelerating Campus Excellence; SOC = South Oak Cliff; W-H = Wilmer-Hutchins.

Generally, the Wilson and Hillcrest feeder patterns had some of the highest scores for many of the TEI components (e.g., summative, achievement), whereas Madison and Seagoville frequently had lower scores.
Distinguished Teacher Status by Feeder Pattern

There was large variation in the percentage of distinguished teachers across high school feeder patterns (see Figure 35). The ACE and Woodrow Wilson feeder patterns had the highest percentages (32.0% and 32.6%, respectively) and Carter had the lowest (7.0%).

Figure 35: Percentage of Teachers Achieving DTR

Note: ACE = Accelerating Campus Excellence; SOC = South Oak Cliff; W-H = Wilmer-Hutchins.

Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding high school feeder pattern are as follows:

1) The average summative performance evaluation score increased for the entire district and for each feeder pattern from 2014-15 to 2015-16. The district average for summative performance evaluation increased from 66.4 in 2014-15 to 71.3 in 2015-16. In addition, the average score for each feeder pattern increased from 2014-15 (57.9-76.6) to 2015-16 (65.7-81.3).

2) The average total student achievement points were relatively consistent from 2014-15 to 2015-16 across feeder patterns. For Category A and B teachers, the average total student achievement points slightly decreased from 20.6 in 2014-15 to 20.4 in 2015-16. For Category C and D teachers, the average total student achievement points were 13.0 for both 2014-15 and 2015-16. The points for each feeder pattern from 2014-15 to 2015-16 varied by only a few points or less.

3) The average school STAAR points increased for the entire district and most feeder patterns. The district average for STAAR points increased from 2.7 in 2014-15 to 3.4 in 2015-16, and the points for all feeder patterns except one increased from 2014-15 (1.7-3.3) to 2015-16 (2.1-4.7).
4) The average student experience points were relatively consistent from 2014-15 to 2015-16 across feeder patterns. While student experience points increased for some feeder patterns (e.g., Wilson and Lincoln), other feeder patterns reported lower student experience scores over time (e.g., Seagoville and Wilmer-Hutchins). However, the district average for student experience scores was 8.1 for both 2014-15 and 2015-16.

5) The percentage of average student experience points were relatively consistent from 2014-15 to 2015-16 across feeder patterns. While student experience points increased for some feeder patterns (e.g., Wilson and Lincoln), other feeder patterns reported lower student experience scores over time (e.g., Seagoville and Wilmer-Hutchins). However, the district average for student experience scores was 8.1 for both 2014-15 and 2015-16.

6) The percentage of DTR teachers increased from 2014-15 to 2015-16 across most feeder patterns. The percentage of DTR teachers in the district increased from 11.6 percent in 2014-15 to 15.6 percent in 2015-16, and the percentage of DTR teachers for all feeder patterns except two increased from 2014-15 (3.8%-21.5%) to 2015-16 (7.0%-32.6%).

What were the results for teacher demographic groups within TEI?

Methodology

The E&A evaluators analyzed teacher evaluation data for the 2015-16 school year. The TEI department provided Scorecard data on November 1, 2016, which included scores for the student achievement and student experience components of TEI. Data were also retrieved from district databases, which included the student records database (created October 30, 2015) and personnel (created April 11, 2016) files. Lastly, the department of Human Capital Management provided a list of Teach for America teachers. Results from the 2015-16 school year were also compared to the 2014-15 TEI report to examine changes over time. The number of teachers varied for each analysis based on the amount of available data. The data were analyzed using Microsoft Excel and SPSS.

The teacher demographic groups that are examined in this section include teachers with various retention statuses (left district, moved out of TEI-coded position, or still TEI-coded teacher), teachers at particular types of schools [magnet, Imagine 2020 (I2020), Improvement Required (IR), and Accelerating Campus Excellence (ACE)], Teach for America (TFA) teachers, first-year teachers, and teachers who were on campuses where the majority of students were African American, Hispanic, or White. Schools were determined to be majority African American schools if there was a higher percentage of African American students than any other single ethnic group. The same method applied for majority Hispanic and White schools.

Many teachers belonged to more than one of these teacher demographic groups. This overlap between groups is important to be aware of because it explains in many instances why TEI scores among teacher demographic groups may be similar or different from one another. For instance, 100 percent of
TFA teachers were either first- (51.8%) or second-year (48.2%) teachers, which likely explains why their scores were similar to newer teacher scores in most cases.

Results

Teacher Demographic Groups

When comparing teacher demographic groups, it is important to remember that not all groups were mutually exclusive. For example, there was overlap among I2020, IR, and ACE schools during the 2015-16 school year. All ACE schools were IR schools, but not all IR schools were ACE schools. Some of the I2020 schools were also IR and ACE schools. Thus, caution should be used when comparing groups.

Table 11 includes average scores for each teacher demographic group on the summative performance evaluation and student experience components. The evaluation rating and effectiveness level for each teacher demographic group is reported as the percentage of teachers who received a proficient and above rating/level.

The highest performing groups were teachers at majority white schools, teachers at magnet schools, and teachers who stayed in the district but moved out of TEI-coded positions. Teachers who left the district received lower average scores than their counterparts who stayed in the district. In general, the group that received the lowest scores was first-year teachers. These teachers scored below the district average in the categories listed in Table 11.

Teachers at I2020, IR, or ACE schools performed better on average than first-year teachers but I2020 and IR schools performed below the district average in most cases. The average scores for the majority Hispanic schools were nearly identical to the district scores. This finding is not surprising considering the fact that 80.7 percent of teachers teach at majority Hispanic schools. Teachers at majority African American schools scored below the district in all areas. Their scores were comparable to teachers at IR schools.
Table 11: Component and Overall Scores by Teacher Demographic Group

<table>
<thead>
<tr>
<th>Teacher Demographic Group</th>
<th>Summative Performance Score</th>
<th>Student Experience</th>
<th>Evaluation Rating (≥Proficient I)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>N</td>
</tr>
<tr>
<td>Left District</td>
<td>1,402</td>
<td>63.52</td>
<td>901</td>
</tr>
<tr>
<td>Retention Status</td>
<td>111</td>
<td>78.59</td>
<td>71</td>
</tr>
<tr>
<td>Moved out of TEI-Coded Position</td>
<td>8,631</td>
<td>72.48</td>
<td>5,153</td>
</tr>
<tr>
<td>Still TEI-Coded Teacher</td>
<td>311</td>
<td>82.35</td>
<td>272</td>
</tr>
<tr>
<td>Magnet Schools*</td>
<td>1,290</td>
<td>69.44</td>
<td>742</td>
</tr>
<tr>
<td>I2020 Schools*</td>
<td>1,520</td>
<td>66.88</td>
<td>817</td>
</tr>
<tr>
<td>IR Schools</td>
<td>294</td>
<td>73.46</td>
<td>180</td>
</tr>
<tr>
<td>ACE Schools</td>
<td>2,810</td>
<td>73.33</td>
<td>1,696</td>
</tr>
<tr>
<td>Post-baccalaureate Degree</td>
<td>199</td>
<td>63.26</td>
<td>165</td>
</tr>
<tr>
<td>Teach for America</td>
<td>1,284</td>
<td>59.28</td>
<td>766</td>
</tr>
<tr>
<td>First-Year Teachers</td>
<td>1,539</td>
<td>67.21</td>
<td>864</td>
</tr>
<tr>
<td>Majority African American Schools</td>
<td>8,219</td>
<td>71.39</td>
<td>5,000</td>
</tr>
<tr>
<td>Majority Hispanic Schools</td>
<td>209</td>
<td>87.82</td>
<td>136</td>
</tr>
<tr>
<td>Majority White Schools</td>
<td>10,144</td>
<td>71.31</td>
<td>6,125**</td>
</tr>
</tbody>
</table>

Note: The evaluation rating scale is Unsatisfactory, Progressing I, Progressing II, Proficient I, Proficient II, Proficient III, Exemplary). Reported percentage is the percentage of teachers who received a Proficient I rating or higher.

* Magnet schools only include teachers who taught at stand-alone magnet schools.

** 6,125 teachers had a student experience score counted toward their evaluation rating. Teachers did not have student experience scores either because their students did not meet the eligibility criteria to participate or not enough students in a classroom participated in order to include the scores.

Because teachers’ achievement scores have different scales depending on their category, the E&A evaluators broke out achievement scores by category. Category A and B teachers received up to 35 points for total achievement while Category C and D teachers received up to 20 points. Table 12 shows the average total student achievement scores of teachers within the teacher demographic groups.
Table 12: Total Student Achievement Scores by Teacher Demographic Group

<table>
<thead>
<tr>
<th>Teacher Demographic Group</th>
<th>Categories A and B (0-35 pts)</th>
<th>Categories C and D (0-20 pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Left District</td>
<td>777</td>
<td>18.0</td>
</tr>
<tr>
<td>Retention Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moved out of TEI-Coded Position</td>
<td>57</td>
<td>20.7</td>
</tr>
<tr>
<td>Still TEI-Coded Teacher</td>
<td>4,207</td>
<td>20.7</td>
</tr>
<tr>
<td>Magnet Schools</td>
<td>167</td>
<td>27.5</td>
</tr>
<tr>
<td>I2020 Schools</td>
<td>642</td>
<td>19.8</td>
</tr>
<tr>
<td>IR Schools</td>
<td>743</td>
<td>17.3</td>
</tr>
<tr>
<td>ACE Schools</td>
<td>164</td>
<td>21.8</td>
</tr>
<tr>
<td>Post-Baccalaureate Degree</td>
<td>1,319</td>
<td>20.3</td>
</tr>
<tr>
<td>Teach for America</td>
<td>163</td>
<td>19.5</td>
</tr>
<tr>
<td>First-Year Teachers</td>
<td>650</td>
<td>18.1</td>
</tr>
<tr>
<td>Majority African American Schools</td>
<td>736</td>
<td>18.1</td>
</tr>
<tr>
<td>Majority Hispanic Schools</td>
<td>4,179</td>
<td>20.4</td>
</tr>
<tr>
<td>Majority White Schools</td>
<td>88</td>
<td>29.1</td>
</tr>
<tr>
<td>District Total</td>
<td>5,041</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Generally, the student achievement scores for the various teacher demographic groups followed a pattern similar to the previous table with some exceptions. Category A and B first-year teachers received higher scores than teachers in IR schools, but Category C and D first-year teachers had lower scores than teachers in IR schools. Teachers at majority white schools had the highest student achievement scores. Magnet teachers in categories A and B had the next highest achievement scores.

TEI Performance by Creditable Years of Service

When TEI evaluation scores were broken out into teacher demographic groups, the results indicated that first-year teachers tended to perform below their more experienced counterparts. The average evaluation scores were lower for teachers in their first or second year of teaching (Figure 36). The growth appears to level out by the third and fourth year in the classroom. In Figure 36, ranges on the x-axis were created by binning teachers into deciles (ten equal groups). For example, approximately 10 percent of the teachers had zero creditable years of service, 10 percent had one creditable years of service, and so forth. Creditable years of service was measured at the start of the 2015-16 school year; thus, “0” creditable years of service indicates a first-year teacher.
Lower evaluation scores translated into lower evaluation ratings for first-year teachers. As shown in Figure 37, only 42 percent of first-year teachers received an evaluation rating of Proficient I or higher, while the mean percentage across the district was 59 percent.

The correlation between creditable years of service and evaluation rating was weak, $\rho = .253$, $p < .001$. The correlation between these two variables was negligible when first- and second-year teachers were removed from the population, $\rho = -.009$, $p = .443$. Figure 38 shows average creditable years of service by evaluation rating.
Comparing Changes from 2014-15 to 2015-16

Major changes from the 2014-15 school year to the 2015-16 school year regarding teacher demographic groups are as follows:

1) **Summative performance evaluation scores increased across all teacher demographic groups from 2014-15 to 2015-16.** The largest increases were found for ACE schools, teachers with post-baccalaureate degrees, teachers at majority white schools, and teachers who participated in Teach for America, which increased by 12.76, 9.43, 6.92, and 5.36 points from 2014-15 to 2015-16, respectively. Summative performance evaluation scores for teachers at ACE campuses would naturally have increased because those campuses replaced less effective teachers from 2014-15 with some of the most effective teachers in the district for the 2015-16 school year as part of the new initiative. In addition, one possible explanation for the increase in scores for teachers with post-baccalaureate degrees could be that some of the lower-performing teachers who had post-baccalaureate degrees left the district after the 2014-15 school year. Summative performance evaluation scores for the remaining teacher demographic groups increased between 2.68 and 5.14 points from 2014-15 to 2015-16.

2) **Student experience scores slightly fluctuated across teacher demographic groups from 2014-15 to 2015-16.** The average student experience score across all teacher demographic groups remained constant from 2014-15 (8.1) to 2015-16 (8.1), but the score for each teacher demographic group slightly changed over time. The largest increases were found for ACE schools and majority white schools, which increased by 1.52 and 1.13 points from 2014-15 to 2015-16. The remaining teacher demographic groups either slightly increased by approximately 0.2 points (e.g., magnet schools) or slightly decreased by 0.69 points or less (e.g., teachers who moved out of TEI-coded positions).
3) The percentage of teachers who achieved a Proficient I rating or higher slightly fluctuated across most teacher demographic groups from 2014-15 to 2015-16. Most teacher demographic groups did not report an increase or decrease of more than six percent in the percentage of teachers who achieved a Proficient I rating or higher from 2014-15 to 2015-16. While the percentage decreased by 43.4 percent at majority white schools and 21.6 percent at magnet schools from 2014-15 to 2015-16, this was likely explained by the 24.7 percent increase in Proficient I or higher teachers who moved to ACE schools.

4) Total student achievement scores generally increased across teacher demographic groups from 2014-15 to 2015-16. For Category A and B teachers, their total student achievement scores for most teacher demographic groups changed by 1.5 points or less from 2014-15 to 2015-16. The largest increase was reported for ACE schools, which increased by 7.3 points. For Category C and D teachers, their total student achievement scores increased across all teacher demographic groups from 2014-15 (7.8-18.1) to 2015-16 (15.5-20.4). The largest increase was also reported for ACE schools, which increased by 12.6 points.

5) For both 2014-15 and 2015-16, first-year teachers generally performed lower than their more experienced counterparts. While average evaluation scores were lower for teachers in their first or second year of teaching, scores generally improved as years of service increased and plateaued between the third and fifth year in the classroom.

6) For both 2014-15 and 2015-16, teachers who had an Unsatisfactory evaluation rating had the lowest average creditable years of service. The average creditable years of service for teachers who received an Unsatisfactory evaluation rating decreased from 8.3 in 2014-15 to 6.4 in 2015-16. The average creditable years of service for teachers who received a Progressing I, Progressing II, or Proficient I evaluation rating slightly decreased from 2014-15 to 2015-16, whereas the average creditable years of service for teachers who received a Proficient II, Proficient III, or Exemplary evaluation rating slightly increased from 2014-15 to 2015-16.
SUMMARY AND RECOMMENDATIONS

Summary

The Teacher Excellence Initiative (TEI) began its first year of implementation during the 2014-15 school year and continued during the 2015-16 school year. The primary objective of TEI is to improve student learning by improving teacher effectiveness. The initiative is an integrated system that defines, supports, and rewards excellence. Defining Excellence involves conducting an annual evaluation of teachers using the following indicators: teacher performance (i.e., rubric-based observations of practice), student achievement (i.e., student assessment results), and student experience (i.e., student survey results). Supporting Excellence involves developing teachers through self-facilitated learning opportunities, one-on-one coaching supports, whole-group training opportunities, district content workshops, differentiated professional development academies, and a new teacher mentor program. Rewarding Excellence involves providing teachers with the opportunity to significantly increase their salaries based on performance rather than tenure with the district. TEI is a continuous improvement model that is designed to be fair, accurate, and rigorous.

The following are the major findings of the TEI evaluation:

- On average, spot observation scores increased from 2014-15 to 2015-16, indicating TEI evaluator feedback could be leading to improved performance over time.
- The correlation between spot observations scores and summative performance evaluation scores increased from 2014-15 to 2015-16, indicating that TEI evaluators’ summative scores became more strongly aligned with what they observed in the classroom over time.
- Within student achievement, relationships among teacher-level student achievement, school STAAR, and SLO measures remained relatively weak and stable from 2014-15 to 2015-16.
- The percentage of items with a positive response on the student survey varied by school level. Elementary core teachers received a significantly higher percentage of positive responses than elementary non-core, middle school, and high school teachers. It is important to note that the TEI system takes into account school level differences by applying cut points and the target distribution which builds equity into the system. The data presented in Figure 14 indicate that this methodology is justified.
- The strength of the relationship among TEI components (teacher performance, student achievement, and student experience) remained mixed but still increased from 2014-15 to 2015-16.
- The average evaluation score for Category A, B, C, and D teachers increased from 2014-15 to 2015-16, which indicated that teachers were performing better over time.
- At least some teachers in each effectiveness level (except those in the unsatisfactory level) who stayed in a TEI position received a pay increase for 2014-15 and 2015-16. While
teachers’ salaries increased more in 2014-15 than 2015-16, this was partially due to the number of teachers in 2014-15 whose salary was automatically increased to meet the minimum salary requirements for each effectiveness level.

- The percentage of teachers who left the Dallas ISD decreased from 2014-15 to 2015-16, and the largest percentage of teachers who left the district was in the Unsatisfactory or Progressing I classifications for both 2014-15 and 2015-16. This indicated that a greater percentage of low performing teachers left the district compared to high performing teachers over time.

To date, the district has not outlined expectations regarding the strength of correlations, or relationships, between or among components and measures of TEI. Further professional development and calibration of the TEI tools may lead to stronger relationships over time. Because TEI is a continuous improvement model, future evaluations should continue to monitor the TEI elements and how they relate to one another in order to determine what relationships should exist and to what degree. The following sections of the summary give an overview of the major findings for each section of this report.

Teacher Performance

The average spot observation score increased from 1.75 in 2014-15 to 1.88 in 2015-16. For both 2014-15 and 2015-16 school years, the average spot observation score significantly increased from the first to last observation, and the size of this difference also increased from 2014-15 to 2015-16. Teacher performance scores were based on a teacher’s summative performance evaluation given by their primary TEI evaluator. When assigning summative performance evaluation scores, the evaluators considered all evidence (i.e., spot, extended, and informal observations). The mean and median were almost identical with a mean of 71.3 and a median, or 50th percentile, of 72.0. Because a score of 67 can be achieved by receiving a two (Proficient) on all items, this indicated that teachers were performing slightly better than proficient on average across the summative performance evaluation rubric. Compared to 2014-15, more summative performance evaluation scores in 2015-16 were on the higher end of the distribution. However, it is not possible to know whether scores increased because teacher performance improved, because scores were being inflated by the TEI evaluators, or because scores were improving because lower performing teachers left the district. In addition, middle school teachers received significantly lower summative scores than elementary or high school teachers. School leadership should explore the potential causes of this difference. In addition, teachers with zero creditable years of service (i.e., first year teachers) had the lowest average summative performance evaluation scores (59.3), but the average scores gradually increased as years of service increased and plateaued between three and five creditable years of service. Lastly, the correlation between spot observation scores and summative performance evaluation scores increased from 2014-15 to 2015-16, indicating that TEI evaluators’ summative scores became more strongly aligned with what they observed in the classroom over time.
Student Achievement

Scores for total student achievement, teacher-level student achievement, and school STAAR were similar for both 2014-15 and 2015-16. First, no statistically significance difference was found between Categories A and B teachers on total student achievement scores, and while the difference between the average scores for Categories C and D was statistically significant, it was not practically significant. Second, teachers with zero creditable years of service had the lowest average score for total student achievement across all teacher categories. Third, each school received an overall school STAAR score that contributed to teachers’ total student achievement scores. The average school STAAR base points that teachers received for both 2014-15 and 2015-16 was 2.63 out of 6.00 points. Fourth, the percentage of teachers who received the maximum number of SLO points increased from 2014-15 (53.1%) to 2015-16 (66.4%). Lastly, the strength of the relationship between teacher-level student achievement and school STAAR and between teacher-level student achievement and SLO remained consistent from 2014-15 ($r = .195-.420$; $\rho = .192-.211$) to 2015-16 ($r = .268-.423$; $\rho = .202-.225$).

Student Experience

The percentage of items with a positive response on the student survey was found to vary by school level (elementary core, elementary non-core, middle, and high school). The percentage of items with a positive response on the student survey for elementary core teachers ($M = 84.82; SD = 9.79$) was significantly higher than elementary non-core ($M = 77.02; SD = 9.93$; Cohen’s $d = 0.79$), middle school ($M = 66.77; SD = 14.30$; Cohen’s $d = 1.49$), and high school teachers ($M = 70.44; SD = 15.15$; Cohen’s $d = 1.12$). Cohen’s d effect sizes indicated that the practical differences between these groups were relatively large. Elementary non-core teachers had a significantly higher average percentage than middle school (Cohen’s $d = 0.76$) and high school teachers (Cohen’s $d = 0.56$), which was a medium effect size. Middle school teachers had a significantly lower percentage than high school (Cohen’s $d = 0.25$), but the practical difference between these groups was relatively small. It is important to note that the TEI system takes into account school level differences by applying cut points and the target distribution which builds equity into the system. The data presented in Figure 14 indicate that this methodology is justified.

Teachers with zero creditable years of service had the lowest average percentage of items with a positive response (71.0%). The average percentage increased until between three and five creditable years of service and gradually decreased as years of service increased.

Correlations among TEI Components

Overall, the strength of the relationships among TEI components increased from 2014-15 to 2015-16. During the 2015-16 school year, teacher performance was moderately correlated with total student achievement scores for Categories A and B teachers ($r = .436$), but a weak correlation was found for Categories C and D teachers ($r = .261$). In addition, the percentage of positive responses on the student
survey was weakly correlated with both summative performance evaluation scores \((r = .332) \) and total student achievement scores \((r = .174-.254) \). Further professional development for teachers and principals may increase the strength of correlations in the future. It is also possible that adjustments to the measures and improvements in rater calibration would further increase the strength of the correlations.

Evaluation Scores and Evaluation Ratings

Teachers’ average evaluation scores increased from 2014-15 to 2015-16, which indicated that teachers were performing better over time. For Category A, B, C, and D teachers, all of their average evaluation scores increased from 2014-15 (63.8-67.5) to 2015-16 (66.0-72.5).

Compensation

Nearly 58 percent \((n = 4,557) \) of teachers received a salary increase during the 2015-16 school year. The median salary change among full-time teachers in TEI-coded teaching positions was $1,000. On average, teachers in each effectiveness level received a pay increase with the exception of teachers in the unsatisfactory level. Teachers in higher effectiveness levels received larger salary increases than those in lower levels. If a teacher’s effectiveness level warranted a salary increase greater than $5,000, the increase was capped at $5,000. Nine percent \((n = 708) \) of teachers fell into this category. However, 33 percent \((n = 2,618) \) of teachers had an effectiveness level which warranted less pay than they made during the 2015-16 school year. Lastly, teachers’ salaries generally increased more in 2014-15 than in 2015-16. While the percentage of teachers who received a pay increase fell from 72 percent in 2014-15 to 58 percent in 2015-16, this was partially due to the number of teachers in 2014-15 whose salary was automatically increased to meet the minimum salary requirements for each effectiveness level.

Distinguished Teacher Review Process

During the 2015-16 school year, 1,759 teachers were eligible for DTR. Of those, 1,592 (90.5%) successfully met all of the requirements and achieved a distinguished effectiveness level. While the average number of DTR points awarded by the district decreased from 12.4 in 2014-15 to 11.34 in 2015-16, the percentage of teachers who achieved DTR status increased from 11.6 percent in 2014-15 to 18.9 percent in 2015-16. This change was likely due to more teachers in 2015-16 receiving points that were concentrated around the average number of DTR points awarded.

Retention Rates

Information about why teachers left the district was gathered from S54 forms, forms teachers completed when they separated from the district. The data in this instance were self-reported. Overall, the percentage of teachers who left the Dallas ISD decreased from approximately 16 percent in 2014-15 to approximately 15 percent in 2015-16. During the 2015-16 school year, teachers left the district for a variety of reasons including retiring, being laid off/discharged, or quitting. The majority of non-retained teachers quit (57.7%) while almost 28 percent retired. Layoffs and discharges accounted for over 11 percent of the non-retained teachers. Lastly, the retention rates for each effectiveness level increased from 2014-15 (44%-91%) to 2015-16 (59%-100%). However, the smallest retention rates were teachers in the
Unsatisfactory or Progressing I classification for both 2014-15 (44%-77%) and 2015-16 (58%-79%). This indicated that a smaller percentage of low performing teachers than high performing teachers remained in the district for both school years.

High School Feeder Pattern

When comparing scores for TEI measures across high school feeder patterns, there was significant variation. In 2015-16, ACE campuses were among the top performing feeder patterns across the district. These results indicated that incentivizing higher performing teachers to relocate to ACE campuses for the 2015-16 school year resulted in improved student outcomes, including both student achievement and student experience (i.e., campus culture) outcomes. The review of summative performance evaluation scores, total student achievement, school STAAR, student experience, and distinguished teacher status data showed that the ACE initiative was successful in achieving the expected results. For more information about student performance at ACE schools over time, see Palladino, 2016.

When comparing results over time, there were some small increases in scores across TEI measures. The district average for summative performance evaluation increased from 66.4 in 2014-15 to 71.3 in 2015-16, and the average score for each feeder pattern increased from 2014-15 (57.9-76.6) to 2015-16 (65.7-81.3). Total student achievement points were relatively consistent from 2014-15 to 2015-16 across feeder patterns. For Category A and B teachers, the average total student achievement score slightly decreased from 20.6 in 2014-15 to 20.4 in 2015-16. For Category C and D teachers, the average total student achievement score was 13.0 for both 2014-15 and 2015-16. The district average for school STAAR scores increased from 2.7 in 2014-15 to 3.4 in 2015-16, and the scores for all feeder patterns except one increased from 2014-15 (1.7-3.3) to 2015-16 (2.1-4.7). While student experience scores increased for some feeder patterns (e.g., Wilson and Lincoln), other feeder patterns reported lower student experience scores over time (e.g., Seagoville and Wilmer-Hutchins). As a result, the district average for student experience scores was 8.1 for both 2014-15 and 2015-16. The percentage of DTR teachers for all feeder patterns except two increased from 2014-15 (3.8%-21.5%) to 2015-16 (7.0%-32.6%).

Teacher Demographic Groups

TEI evaluation scores varied by teacher demographic groups, but many teachers belonged to more than one of these groups. This overlap between groups is important to be aware of because it explains in many instances why TEI scores among the teacher demographic groups may be similar or different from one another. For the 2015-16 school year, the highest performing groups were teachers at majority white schools, teachers at magnet schools, and teachers who stayed in the district but moved out of TEI-coded positions. Teachers who left the district received lower average scores than their counterparts who stayed in the district. The group that received the lowest scores was first-year teachers with the exception of TFA teachers. The average evaluation scores were lower for teachers in their first or second year of teaching, and improvement appeared to level out by the third and fourth year in the classroom. Teachers at I2020, IR, or ACE schools performed better on average than first-year teachers, but I2020 and IR schools performed below the district average in most areas. The average scores for the majority Hispanic schools
was nearly identical to the district scores. This finding is not surprising considering the fact that 80.7 percent of teachers teach at majority Hispanic schools. Teachers at majority African American schools scored below the district in all areas. Their scores were comparable to teachers at IR schools.

Overall, summative performance evaluation scores increased across all teacher demographic groups from 2014-15 to 2015-16. The largest increases were found for teachers at ACE schools, teachers with post-baccalaureate degrees, teachers at majority white schools, and teachers who participated in Teach for America, which increased by 12.76, 9.43, 6.92, and 5.36 points from 2014-15 to 2015-16, respectively. In addition, total student achievement scores generally increased across teacher demographic groups from 2014-15 to 2015-16. For Category A and B teachers, their total student achievement scores for most teacher demographic groups changed by 1.5 points or less from 2014-15 to 2015-16. The largest increase was reported for ACE schools, which increased by 7.3 points. For Category C and D teachers, their total student achievement scores increased across all teacher demographic groups from 2014-15 (7.8-18.1) to 2015-16 (15.5-20.4). The largest increase was also reported for ACE schools, which increased by 12.6 points. Lastly, while the average student experience score was 8.1 for both 2014-15 and 2015-16, scores slightly fluctuated across teacher demographic groups.

Recommendations

The following are recommendations based on the results of the 2015-16 TEI program evaluation:

1. School leadership and TEI staff members should explore and address the following quantitative findings, including determining whether additional professional development or rubric calibration is needed:
 a) Lower summative evaluation ratings among middle school teachers.
 b) Poor distribution of scores on the SLO measure.
 c) Low correlations among achievement component measures (student achievement, school STAAR, and SLO points).
 d) The strength of the correlations among the three TEI components (summative performance evaluation, student achievement, and student experience). Further professional development may help to strengthen the relationship between these three components.

2. Future evaluations should continue to monitor the correlation strength among the three TEI components.

3. Future evaluations should consider the methods by which TEI component data are analyzed. Because some data are analyzed after the target distribution has been applied, it may be more appropriate to analyze raw scores. Evaluators should determine to what extent this is possible.
REFERENCES

